Pages

Kamis, 22 Desember 2011

Scientific Management

SCIENTIFIC MANAGEMENT is a term coined in 1910 to describe the system of industrial management created and promoted by Frederick W. Taylor (1856– 1915) and his followers. Though Taylor had used the term informally to describe his contributions to factory or "shop" management, Morris L. Cooke, a friend and professional associate, and Louis Brandeis, a prominent attorney, deliberately chose the adjective "scientific" to promote their contention that Taylor's methods were an alternative to railroad price increases in a rate case they were preparing for the Interstate Commerce Commission. The term also came to mean any system of organization that clearly spelled out the functions of individuals and groups. With even less fidelity to the original meaning, it has been used to describe any situation where jobs are subdivided and individuals perform repetitive tasks.


Origins

The nineteenth-century factory system was characterized by ad hoc organization, decentralized management, informal relations between employers and employees, and casually defined jobs and job assignments. By the end of the nineteenth century, however, increased competition, novel technologies, pressures from government and labor, and a growing consciousness of the potential of the factory had inspired a wide-ranging effort to improve organization and management. The focus of this activity was the introduction of carefully defined procedures and tasks. Historians have labeled these innovations "systematic management."
The central figure in this movement was the American engineer, inventor, and management theorist Frederick W. Taylor. Born in 1856 to an aristocratic Philadelphia family, Taylor started his career in the machine shop of the Midvale Steel Company in 1878, rose rapidly, and began to introduce novel methods. In the next decade he devised numerous organizational and technical innovations, including a method of timing workers with a stopwatch to calculate optimum times. After a brief career as the manager of a paper company, Taylor became a self-employed consultant, devoted to improving plant management.
During these years Taylor, an 1883 engineering graduate of the Stevens Institute of Technology, also became a major figure in the engineering profession, whose adherents sought an identity based on rigorous formal education, mutually accepted standards of behavior, and social responsibility. In factories, mines, and railroad yards, engineers rejected the experiential knowledge of the practitioner for scientific experimentation and analysis. They became the principal proponents of systematic management.
In the 1890s, Taylor became the most ambitious and vigorous proponent of systematic management. As a consultant he introduced accounting systems that permitted managers to use operating records with greater effectiveness, production systems that allowed managers to know more precisely what was happening on the shop floor, time studies to determine what workers were able to do, piece-rate systems to encourage employees to follow instructions, and many related measures. Between 1898 and 1901, as a consultant to the Bethlehem Iron Company (later Bethlehem Steel), Taylor introduced all of his systems and engaged in a vigorous plan of engineering re-search. This experience was the capstone of his creative career. Two developments were of special importance. His discovery of "high-speed steel," which improved the performance of metal cutting tools, assured his fame as an inventor, and his efforts to introduce systematic methods led to an integrated view of managerial innovation. By 1901, Taylor had fashioned scientific management from systematic management.
As the events of Taylor's career indicate, systematic management and scientific management were intimately related. They had common roots, attracted the same kinds of people, and had the same objectives. Their differences also stand out. Systematic management was diffuse and utilitarian, a number of isolated measures that did not add up to a larger whole. Scientific management added significant detail and a comprehensive view. In 1901, when he left Bethlehem, Taylor resolved to devote his time and ample fortune to promoting both. His first extensive report on his work, "Shop Management," published in 1903 in the journal of the American Society of Mechanical Engineers, portrayed an integrated complex of systematic management methods, supplemented by refinements and additions, such as time study.

The Diffusion of Scientific Management

After 1901, Taylor devoted his time to publicizing his work and attracting clients, whom he would refer to as trusted lieutenants, such as Henry L. Gantt, Carl G. Barth, Morris L. Cooke, and Frank B. Gilbreth. Taylor and his followers emphasized the importance of introducing the entire system. Most manufacturers, however, only wanted solutions to specific problems. They were particularly drawn to time study and the incentive wage, seemingly the most novel features of Taylor's system, which they had hoped would raise output and wean employees from organized labor. Taylor and his followers had little sympathy for unions and were slow to realize the implications of this course. By 1910, the metal trade unions and the American Federation of Labor (AFL) had become outspoken enemies of scientific management and Taylor and his followers were embroiled in a controversy that would continue for another five years. These developments had a substantial influence on Taylor's efforts to publicize his work. To respond to opportunities like the 1911 rate case hearings, as well as the union attacks, Taylor (with Cooke's assistance) prepared a new account of his system that he called The Principles of Scientific Management (1911). He embraced the term "scientific management," made time study its centerpiece, and used it as a metaphor for the system as a whole. Taylor argued that he had discovered universal "principles" of management: the substitution of scientific for "rule-of-thumb" methods, the "scientific selection and training of the workmen," and an equal division of work between managers and workers. To implement the principles successfully, managers and workers had to undergo a "complete revolution in mental attitude."
The Principles of Scientific Management was an immediate success. Its simplicity, colorful anecdotes, and insistence that the details of factory management were applicable to other activities captured the imaginations of readers. Translated into many languages, it became the best-selling business book of the first half of the twentieth century.
Two additional developments greatly extended Taylor's influence in the following years. First, other writers restated his principles in more inclusive terms and explored their implications. The most notable example was Henri Fayol, a prominent French mine manager who discussed the functions of top executives in several technical papers and in General and Industrial Administration (1916). Though Fayol operated independently of Taylor, he demonstrated that Taylor's ideas applied to the entire organization, not just the factory. Second, a growing corps of consultants installed scientific management in industry. Gantt, Barth, Cooke, Gilbreth, and others closely associated with Taylor initially dominated this activity, but outsiders such as Harrington Emerson and Charles Bedaux, who took a more flexible and opportunistic approach to the application of Taylor's methods, became increasingly popular.

Scientific Management in Industry

Between 1901 and 1915, the year Taylor died, his close associates introduced scientific management in at least 181 American factories. Some of the plants were large and modern, like those of the Pullman Railcar and Remington Typewriter companies; others were small and technologically primitive. Most of the 181 companies fell into one of two broad categories: first were those whose activities required the movement of large quantities of materials between numerous work stations (such as textile mills, railroad repair shops, and automobile plants); the second group consisted of innovative firms, mostly small, that were already committed to managerial innovation. Executives at these latter firms were attracted to Taylor's promise of social harmony and improved working conditions.
The history of scientific management in these 181 plants provides little support for the contention, common to many later accounts, that Taylor's central concern was the individual employee. Consultants devoted most of their time and energies to machine operations, tools and materials, production schedules, routing plans, and record systems. In one-third of the factories, these activities generated such controversy that time and motion studies were never undertaken. In others, such as the Franklin automobile company and several textile mills, the installation consisted almost exclusively of improvements in production planning and scheduling. As a result, one-half or more of all employees were passive participants. They may have experienced fewer delays, used different tools, or worked for less powerful supervisors, but their own activities were unaffected. Taylor promised that those workers directly affected would receive higher wages and have less reason for conflict with their supervisors. Most assessments of these claims have concluded that Taylor promised more than he could deliver.
The experiences of the 181 firms suggest that union leaders and other critics also exaggerated the dangers of scientific management. One example was the argument that skilled workers would lose their autonomy and opportunities for creativity. In the relatively few cases where skilled workers were timed and placed on an incentive wage, they devoted more time to their specialties, while less-skilled employees took over other activities. Critics were on firmer ground when they argued that scientific management would lead to speedups, rate cuts, and the elimination of employees whose skills or motivation were below average. In theory, only the most inferior workers had to worry. But many employers were less scrupulous or less patient. They gave lip service to Taylor's idea of an interrelated whole, but looked to the employees for immediate results. The association of time study with rate cuts sparked a famous strike at Watertown Arsenal in 1911, and was the apparent cause of strikes at the Joseph and Feiss Company and at three American Locomotive Company plants. Outside the Taylor circle the problem was even more widespread.
In summary, the available data from these early examples suggest that (1) first-line supervisors lost much of their authority to higher-level managers and their staffs; (2) the proportion of the work day devoted to production increased as delays were eliminated; (3) fewer decisions depended on personal judgments, biases, and subjective evaluations; (4) individual jobs were more carefully de-fined and some workers exercised less discretion; (5) in most cases earnings rose, but there were enough exceptions to blur the effect; (6) the level of skill required in production did not change, though the most highly skilled employees, like foremen, lost some of their de facto managerial functions; (7) some unskilled jobs disappeared as improved scheduling and accounting reduced the need for laborers.
Though the initial impact of scientific management would have seemed surprisingly modest to a contemporary reader of The Principles, in retrospect it is clear that Taylor and his associates provided a forecast and a blueprint for changes that would occur in most large industrial organizations over the next quarter century.
After 1915, scientific management—usually features of scientific management rather than the Taylor system—spread rapidly in the United States. There were undoubtedly wide variations in practice and, in the work of Charles Bedaux and others like him, efforts to exploit time study and the incentive wage to achieve immediate cost reductions at the workers' expense. But the surviving evidence suggests substantial continuity between the early experiences, reviewed above, and those of the 1910s and 1920s. One ironic measure of this continuity was the alliance between organized labor and scientific management that emerged after Taylor's death. By the mid-1910s, union leaders, with considerable prodding from Taylor's more liberal followers like Morris Cooke—realized that they had more to gain than lose from scientific management. Experience had shown that supervisors, not workers, were the real targets of scientific management and that the structured relationships characteristic of scientifically managed plants were compatible with collective bargaining.

Conclusion

By the 1920s, self-conscious management, systematic planning, specialization of function, and highly structured, formal relationships between managers and workers had become the hallmarks of modern industry. These features of the twentieth-century factory system were the legacy of systematic management and especially of Taylor and his disciples, the most important contributors to the campaign for order and rationality in industry. In the process of reorganizing the factory they made scientific management a malleable symbol of the potential of modern organization for changing virtually every facet of contemporary life.

By : Arif Hidayat (115060700111108)

0 komentar:

Posting Komentar